But, as usual, times change. We are faced today with a world in which little old ladies can get computers in their microwave ovens, 12-year-old kids can blow Real Men out of the water playing Asteroids and Pac-Man, and anyone can buy and even understand their very own Personal Computer. The Real Programmer is in danger of becoming extinct, of being replaced by high-school students with TRASH-80's.
There is a clear need to point out the differences between the typical high-school junior Pac-Man player and a Real Programmer. If this difference is made clear, it will give these kids something to aspire to -- a role model, a Father Figure. It will also help explain to the employers of Real Programmers why it would be a mistake to replace the Real Programmers on their staff with 12-year-old Pac-Man players (at a considerable salary savings).
Unix is a lot more complicated of course -- the typical Unix hacker never can remember what the PRINT command is called this week -- but when it gets right down to it, Unix is a glorified video game. People don't do Serious Work on Unix systems: they send jokes around the world on UUCP-net and write adventure games and research papers.
No, your Real Programmer uses OS\370. A good programmer can find and understand the description of the IJK305I error he just got in his JCL manual. A great programmer can write JCL without referring to the manual at all. A truly outstanding programmer can find bugs buried in a 6 megabyte core dump without using a hex calculator. (I have actually seen this done.)
OS is a truly remarkable operating system. It's possible to destroy days of work with a single misplaced space, so alertness in the programming staff is encouraged. The best way to approach the system is through a keypunch. Some people claim there is a Time Sharing system that runs on OS\370, but after careful study I have come to the conclusion that they were mistaken.
One of my favorite Real Programmers was a systems programmer for Texas Instruments. One day he got a long distance call from a user whose system had crashed in the middle of saving some important work. Jim was able to repair the damage over the phone, getting the user to toggle in disk I/O instructions at the front panel, repairing system tables in hex, reading register contents back over the phone. The moral of this story: while a Real Programmer usually includes a keypunch and lineprinter in his toolkit, he can get along with just a front panel and a telephone in emergencies.
In some companies, text editing no longer consists of ten engineers standing in line to use an 029 keypunch. In fact, the building I work in doesn't contain a single keypunch. The Real Programmer in this situation has to do his work with a "text editor" program. Most systems supply several text editors to select from, and the Real Programmer must be careful to pick one that reflects his personal style. Many people believe that the best text editors in the world were written at Xerox Palo Alto Research Center for use on their Alto and Dorado computers [3]. Unfortunately, no Real Programmer would ever use a computer whose operating system is called SmallTalk, and would certainly not talk to the computer with a mouse.
Some of the concepts in these Xerox editors have been incorporated into editors running on more reasonably named operating systems -- EMACS and VI being two. The problem with these editors is that Real Programmers consider "what you see is what you get" to be just as bad a concept in Text Editors as it is in women. No the Real Programmer wants a "you asked for it, you got it" text editor -- complicated, cryptic, powerful, unforgiving, dangerous. TECO, to be precise.
It has been observed that a TECO command sequence more closely resembles transmission line noise than readable text [4]. One of the more entertaining games to play with TECO is to type your name in as a command line and try to guess what it does. Just about any possible typing error while talking with TECO will probably destroy your program, or even worse -- introduce subtle and mysterious bugs in a once working subroutine.
For this reason, Real Programmers are reluctant to actually edit a program that is close to working. They find it much easier to just patch the binary object code directly, using a wonderful program called SUPERZAP (or its equivalent on non-IBM machines). This works so well that many working programs on IBM systems bear no relation to the original FORTRAN code. In many cases, the original source code is no longer available. When it comes time to fix a program like this, no manager would even think of sending anything less than a Real Programmer to do the job -- no Quiche Eating structured programmer would even know where to start. This is called "job security".
Some programming tools NOT used by Real Programmers:
The current plan for the Galileo spacecraft is to use a gravity assist trajectory past Mars on the way to Jupiter. This trajectory passes within 80 +/-3 kilometers of the surface of Mars. Nobody is going to trust a PASCAL program (or a PASCAL programmer) for navigation to these tolerances.
As you can tell, many of the world's Real Programmers work for the U.S. Government -- mainly the Defense Department. This is as it should be. Recently, however, a black cloud has formed on the Real Programmer horizon. It seems that some highly placed Quiche Eaters at the Defense Department decided that all Defense programs should be written in some grand unified language called "ADA" ((C), DoD). For a while, it seemed that ADA was destined to become a language that went against all the precepts of Real Programming -- a language with structure, a language with data types, strong typing, and semicolons. In short, a language designed to cripple the creativity of the typical Real Programmer. Fortunately, the language adopted by DoD has enough interesting features to make it approachable -- it's incredibly complex, includes methods for messing with the operating system and rearranging memory, and Edsgar Dijkstra doesn't like it [6]. (Dijkstra, as I'm sure you know, was the author of "GoTos Considered Harmful" -- a landmark work in programming methodology, applauded by PASCAL programmers and Quiche Eaters alike.) Besides, the determined Real Programmer can write FORTRAN programs in any language.
The Real Programmer might compromise his principles and work on something slightly more trivial than the destruction of life as we know it, providing there's enough money in it. There are several Real Programmers building video games at Atari, for example. (But not playing them -- a Real Programmer knows how to beat the machine every time: no challenge in that.) Everyone working at LucasFilm is a Real Programmer. (It would be crazy to turn down the money of fifty million Star Trek fans.) The proportion of Real Programmers in Computer Graphics is somewhat lower than the norm, mostly because nobody has found a use for computer graphics yet. On the other hand, all computer graphics is done in FORTRAN, so there are a fair number of people doing graphics in order to avoid having to write COBOL programs.
The typical Real Programmer lives in front of a computer terminal. Surrounding this terminal are:
From my experience, I can only report that the future is bright for Real Programmers everywhere. Neither OS\370 nor FORTRAN show any signs of dying out, despite all the efforts of PASCAL programmers the world over. Even more subtle tricks, like adding structured coding constructs to FORTRAN have failed. Oh sure, some computer vendors have come out with FORTRAN 77 compilers, but every one of them has a way of converting itself back into a FORTRAN 66 compiler at the drop of an option card -- to compile DO loops like God meant them to be.
Even Unix might not be as bad on Real Programmers as it once was. The latest release of Unix has the potential of an operating system worthy of any Real Programmer -- two different and subtly incompatible user interfaces, an arcane and complicated teletype driver, virtual memory. If you ignore the fact that it's "structured", even 'C' programming can be appreciated by the Real Programmer: after all, there's no type checking, variable names are seven (ten? eight?) characters long, and the added bonus of the Pointer data type is thrown in -- like having the best parts of FORTRAN and assembly language in one place. (Not to mention some of the more creative uses for #define.)
No, the future isn't all that bad. Why, in the past few years, the popular press has even commented on the bright new crop of computer nerds and hackers ([7] and [8]) leaving places like Stanford and M.I.T. for the Real World. From all evidence, the spirit of Real Programming lives on in these young men and women. As long as there are ill-defined goals, bizarre bugs, and unrealistic schedules, there will be Real Programmers willing to jump in and Solve The Problem, saving the documentation for later. Long live FORTRAN!
[1] Feirstein, B., "Real Men don't Eat Quiche", New York, Pocket Books, 1982.[2] Wirth, N., "Algorithms + Data Structures = Programs", Prentice Hall, 1976.
[3] Ilson, R., "Recent Research in Text Processing", IEEE Trans. Prof. Commun., Vol. PC-23, No. 4, Dec. 4, 1980.
[4] Finseth, C., "Theory and Practice of Text Editors -- or -- a Cookbook for an EMACS", B.S. Thesis, MIT/LCS/TM-165, Massachusetts Institute of Technology, May 1980.
[5] Weinberg, G., "The Psychology of Computer Programming", New York, Van Nostrand Reinhold, 1971, p. 110.
[6] Dijkstra, E., "On the GREEN language submitted to the DoD", Sigplan notices, Vol. 3 No. 10, Oct 1978.
[7] Rose, Frank, "Joy of Hacking", Science 82, Vol. 3 No. 9, Nov 82, pp. 58-66.
[8] "The Hacker Papers", Psychology Today, August 1980.
[9] sdcarl!lin, "Real Programmers", UUCP-net, Thu Oct 21 16:55:16 1982
(Message 16) Subject: Real programmers (2) From: R.D.Eager@UKC 05 Oct 83 16:21:03 BST To: J.Darby@ukc Comments: The stuff we got from UNIX Msg ID: <05 Oct 83 16:21:03 BST 060206@2960>Real programmers would rather use a bank of toggle switches and read a row of LED's then use such encumbersome devices as keyboards & CRTs to talk to computers. Marc
Real Programmers patch binaries rather than recompile.
Real programmers punch up their object decks using 029 multipunch. (That is for production decks; test runs are entered directly with the engineer's console switches; btw ODT systems are for sissies)
What the hell are all these 'real programmers' doing submitting news articles? They should be off in some corner hacking FORTRAN.
From: Ron Natalie
But real programmers are on every mailing list there is and spend the first six hours of each 18 hour workday reading their mail and sending off-hand suggestions to Unix-Wizards and Info-Micro, and writing page long editorials for SF-Lovers, Poly-Sci, and ArmsD.
From: Charlie Strom (NYU)
I agree that the group might have gotten a little carried away, but it irritates me to see people who claim to be on the leading edge of computer technology unable to spell even simple words or use acceptable grammar. Expertise in one field does not imply the necessity of total ignorance in another, does it?
I would much prefer to see some more messages correcting spelling and usage (the silicone vs. silicon was the latter) rather than a dozen more opinions on what 'real programmers' do or do not perform when nobody is watching them!
Real Programmers don't go for all the overhead of patching binaries, Real Programmers patch memory directly.
From: Jeffrey Shulman
Real Programmers do AI in assembly language.
Real Programmers do number crunching in InterLisp on a Z-80 with 4K bytes memory.
Real Lisp Programmers never use SETx or PROGx and rely totally on side effects.
From: Jerry E. Pournelle
Real Programmers don't use decimal....
Real programmers think in hex and can program their machines without resorting to assemblers or high-level languages.
Real Programmers write in Fortran.Maybe they do now, in this decadent era of Lite beer, hand calculators and "user-friendly" software, but back in the Good Old Days, when the term "software" sounded funny and Real Computers were made out of drums and vacuum tubes, Real Programmers wrote in machine code. Not Fortran. Not RATFOR. Not, even, assembly language. Machine Code. Raw, unadorned, inscrutable hexadecimal numbers. Directly.
Lest a whole new generation of programmers grow up in ignorance of this glorious past, I feel duty-bound to describe, as best I can through the generation gap, how a Real Programmer wrote code. I'll call him Mel, because that was his name.
I first met Mel when I went to work for Royal McBee Computer Corp., a now-defunct subsidiary of the typewriter company. The firm manufactured the LGP-30, a small, cheap (by the standards of the day) drum-memory computer, and had just started to manufacture the RPC-4000, a much-improved, bigger, better, faster -- drum-memory computer. Cores cost too much, and weren't here to stay, anyway. (That's why you haven't heard of the company, or the computer.)
I had been hired to write a Fortran compiler for this new marvel and Mel was my guide to its wonders. Mel didn't approve of compilers.
"If a program can't rewrite its own code," he asked, "what good is it?"
Mel had written, in hexadecimal, the most popular computer program the company owned. It ran on the LGP-30 and played blackjack with potential customers at computer shows. Its effect was always dramatic. The LGP-30 booth was packed at every show, and the IBM salesmen stood around talking to each other. Whether or not this actually sold computers was a question we never discussed.
Mel's job was to re-write the blackjack program for the RPC-4000. (Port? What does that mean?) The new computer had a one-plus-one addressing scheme, in which each machine instruction, in addition to the operation code and the address of the needed operand, had a second address that indicated where, on the revolving drum, the next instruction was located. In modern parlance, every single instruction was followed by a GO TO! Put that in Pascal's pipe and smoke it.
Mel loved the RPC-4000 because he could optimize his code: that is, locate instructions on the drum so that just as one finished its job, the next would be just arriving at the "read head" and available for immediate execution. There was a program to do that job, an "optimizing assembler," but Mel refused to use it.
"You never know where its going to put things," he explained, "so you'd have to use separate constants."
It was a long time before I understood that remark. Since Mel knew the numerical value of every operation code, and assigned his own drum addresses, every instruction he wrote could also be considered a numerical constant. He could pick up an earlier "add" instruction, say, and multiply by it, if it had the right numeric value. His code was not easy for someone else to modify.
I compared Mel's hand-optimized programs with the same code massaged by the optimizing assembly program, and Mel's always ran faster. That was because the "top-down" method of program design hadn't been invented yet, and Mel wouldn't have used it anyway. He wrote the innermost parts of his program loops first, so they would get first choice of the optimum address locations on the drum. The optimizing assembler wasn't smart enough to do it that way.
Mel never wrote time-delay loops, either, even when the balky Flexowriter required a delay between output characters to work right. He just located instructions on the drum so each successive one was just *past* the read head when it was needed; the drum had to execute another complete revolution to find the next instruction. He coined an unforgettable term for this procedure. Although "optimum" is an absolute term, like "unique", it became common verbal practice to make it relative: "not quite optimum" or "less optimum" or "not very optimum." Mel called the maximum time-delay locations the "most pessimum." After he finished the blackjack program and got it to run, ("Even the initializer is optimized," he said proudly) he got a Change Request from the sales department. The program used an elegant (optimized) random number generator to shuffle the "cards" and deal from the "deck," and some of the salesmen felt it was too fair, since sometimes the customers lost. They wanted Mel to modify the program so, at the setting of a sense switch on the console, they could change the odds and let the customer win.
Mel balked. He felt this was patently dishonest, which it was, and that it impinged on his personal integrity as a programmer, which it did, so he refused to do it. The Head Salesman talked to Mel, as did the Big Boss and, at the boss's urging, a few Fellow Programmers. Mel finally gave in and wrote the code, but he got the test backwards and, when the sense switch was turned on, the program would cheat, winning every time. Mel was delighted with this, claiming his subconscious was uncontrollably ethical, and adamantly refused to fix it.
After Mel had left the company for greener pa$ture$, the Big Boss asked me to look at the code and see if I could find the test and reverse it. Somewhat reluctantly, I agreed to look. Tracking Mel's code was a real adventure.
I have often felt that programming is an art form, whose real value can only be appreciated by another versed in the same arcane art; there are lovely gems and brilliant coups hidden from human view and admiration, sometimes forever, by the very nature of the process. You can learn a lot about an individual just by reading through his code, even in hexadecimal. Mel was, I think, an unsung genius.
Perhaps my greatest shock came when I found an innocent loop that had no test in it. No test. None. Common sense said it had to be a closed loop, where the program would circle, forever, endlessly. Program control passed right through it, however, and safely out the other side. It took me two weeks to figure it out.
The RPC-4000 computer had a really modern facility called an index register. It allowed the programmer to write a program loop that used an indexed instruction inside; each time through, the number in the index register was added to the address of that instruction, so it would refer to the next datum in a series. He had only to increment the index register each time through. Mel never used it.
Instead, he would pull the instruction into a machine register, add one to its address, and store it back. He would then execute the modified instruction right from the register. The loop was written so this additional execution time was taken into account -- just as this instruction finished, the next one was right under the drum's read head, ready to go. But the loop had no test in it.
The vital clue came when I noticed the index register bit, the bit that lay between the address and the operation code in the instruction word, was turned on -- yet Mel never used the index register, leaving it zero all the time. When the light went on it nearly blinded me.
He had located the data he was working on near the top of memory -- the largest locations the instructions could address -- so, after the last datum was handled, incrementing the instruction address would make it overflow. The carry would add one to the operation code, changing it to the next one in the instruction set: a jump instruction. Sure enough, the next program instruction was in address location zero, and the program went happily on its way.
I haven't kept in touch with Mel, so I don't know if he ever gave in to the flood of change that has washed over programming techniques since those long-gone days. I like to think he didn't. In any event, I was impressed enough that I quit looking for the offending test, telling the Big Boss I couldn't find it. He didn't seem surprised. When I left the company, the blackjack program would still cheat if you turned on the right sense switch, and I think that's how it should be. I didn't feel comfortable hacking up the code of a Real Programmer.
Subject: Real Programmers (4) From: R.D.Eager@UKC 05 Oct 83 16:21:30 BST To: J.Darby@ukc Comments: This is even earlier then the Mel one; a short set of definitions.Real Programmers don't write specs -- users should consider themselves lucky to get any programs at all and take what they get.
Real Programmers don't comment their code. If it was hard to write, it should be hard to understand.
Real Programmers don't write application programs; they program right down on the bare metal. Application programming is for feebs who can't do systems programming.
Real Programmers don't eat quiche. In fact, real programmers don't know how to SPELL quiche. They eat Twinkies, and Szechwan food.
Real Programmers don't write in COBOL. COBOL is for wimpy applications programmers.
Real Programmers' programs never work right the first time. But if you throw them on the machine they can be patched into working in "only a few" 30-hour debugging sessions.
Real Programmers don't write in FORTRAN. FORTRAN is for pipe stress freaks and crystallography weenies.
Real Programmers never work 9 to 5. If any real programmers are around at 9 AM, it's because they were up all night.
Real Programmers don't write in BASIC. Actually, no programmers write in BASIC, after the age of 12.
Real Programmers don't write in PL/I. PL/I is for programmers who can't decide whether to write in COBOL or FORTRAN.
Real Programmers don't play tennis, or any other sport that requires you to change clothes. Mountain climbing is OK, and real programmers wear their climbing boots to work in case a mountain should suddenly spring up in the middle of the machine room.
Real Programmers don't document. Documentation is for simps who can't read the listings or the object deck.
Real Programmers don't write in PASCAL, or BLISS, or ADA, or any of those pinko computer science languages. Strong typing is for people with weak memories.
(Message 19) Subject: Real Programmers (5) From: R.D.Eager@UKC 05 Oct 83 16:21:43 BST To: J.Darby@ukcYou may have observed that: